Инверторы и контроллеры мощности в солнечной энергетике
Солнечная энергетика развивается стремительными темпами и недаром рассматривается многими как энергетика будущего. Мы продолжаем знакомить читателей с основными принципами работы систем, которые генерируют электроэнергию за счет энергии солнца.
Одним из основных элементов таких систем является аккумулятор. Но не менее важны и другие устройства - контроллеры мощности и инверторы. В этой статье мы обсудим особенности контроллеров мощности и инверторов, используемых в солнечной энергетике.
- Конструкция инвертора
- Основные характеристики инвертора
- Особенности солнечного инвертора
- Зачем нужен контроллер мощности
- Отслеживание максимальной мощности солнечной панели
- Энергия будущего
Зачем же нужны данные устройства? Дело в том, что ток, вырабатываемый фотоэлементами, постоянный, а большинство бытовых электроприборов питаются от переменного тока. Задачу преобразования постоянного в переменный ток решает инвертор. А контроллер мощности позволяет добиться, чтобы производительность фотоэлементов была близка к максимальной.
Конструкция инвертора
Инвертор, наряду с аккумулятором, является «обязательным» элементом солнечных энергетических систем. Инверторы используются для преобразования постоянного тока в переменный.
Основными компонентами инверторов являются коммутационные или переключающие элементы. В зависимости от их состояния, постоянный ток от источника, например, от солнечной панели, идет к нагрузке (потребителю) то по одному, то по другому контуру. Коммутационные элементы постоянно переключаются, чередуя направление тока в каждой последовательности переключения.
В качестве переключающего элемента обычно используются полупроводниковые переключатели (в основном, транзисторы). На практике МОП-транзисторы (MOSFET, англ.) широко используются в инверторах с выходной мощностью до 5 кВт. В системах с большей мощностью обычно используются биполярные транзисторы с изолированным затвором (IGBT, англ.). IGBT-транзисторы быстро вытесняют популярные некогда тиристоры из высоковольтных схем преобразования частоты и позволяют создать импульсные источники вторичного электропитания с качественно лучшими характеристиками.
Самый простой инвертор генерирует переменный ток прямоугольной формы. Ниже показан принцип работы такого инвертора (создание сигнала переменного тока прямоугольной формы, направление движения тока отмечено красным цветом).
Этот инвертор может использоваться для подачи тока на простые устройства, такие как спиральные обогреватели, но не годится для большинства более сложных бытовых приборов, поскольку он вызывает значительные гармонические искажения. Более сложные типы инверторов работают по сходному принципу, но выдают потребителю сигнал с формой, приближенной к классической синусоидальной.
На рынке сегодня имеется множество инверторов различных конструкций, которые способны выдавать переменный ток от простых прямоугольных до почти идеальных синусоидальных волн. «Продвинутые» инверторы в процессе преобразования используют много стадий переключения для создания как можно более гладкой волны, а фильтры, установленные в них, позволяют получить синусоиду правильной формы.
Основные характеристики инвертора
Однофазные инверторы обычно устанавливаются в системах с низким энергопотреблением, например, в частных домах. Трехфазные инверторы, как правило, используются в солнечных установках большой мощности, которые обслуживают несколько домовладений или иных потребителей энергии. Такие солнечные установки высокой мощности обычно имеют дополнительно трансформаторы для повышения напряжения, передаваемого по сети.
Одной из основных характеристик инвертора является его мощность. Мощность инвертора определяется мощностью фотоэлементов, генерирующих постоянный ток за счет солнечной энергии. Другими важными характеристиками выступают напряжение переменного тока на выходе инвертора и его частота. Для полноценной работы солнечной системы выходное напряжение и частота должны всегда оставаться стабильными, а само устройство обязано выдерживать ограниченную по времени перегрузку и высокие пусковые или пиковые токи.
Другие публикации TopClimat.ru по теме | |
Аккумуляторы в солнечной энергетике | |
Тепловые насосы для отопления вашего дома |
Информация о том, какую перегрузки и в течение какого времени может выдержать инвертор заносится в паспорт устройства. Следует помнить, что вход и выход инвертора должны быть гальванически изолированы.
Еще одним важным параметром инвертора является его эффективность. Эффективность инвертора - это величина, характеризующая потери энергии в инверторе, когда он преобразует постоянный ток в переменный. Она определяется как соотношение полезной выходной мощности ко входу.
Как видите, инвертор способен на многое, но при этом не лишен недостатков. Пожалуй, главным из них является то, что обычный простой инвертор выкачивает накопленную аккумулятором энергию, даже если она не нужна потребителю, просто в силу своих конструктивных особенностей. Это снижает общую эффективность солнечной системы. Поэтому в больших системах используются инверторы «спящего режима», оборудованные специальными датчиками, предотвращающими «холостые» потери. Такой датчик обнаруживает, нужно ли подать питание на нагрузку и только после этого активирует инвертор. В противном случае инвертор спокойно «спит» и не крадет энергию из аккумулятора.
Необходимо отметить, что технологии производства солнечных систем прогрессируют невиданными темпами. И сегодня на рынке доступны инверторы, имеющие эффективность на уровне 95%, а лучшие образцы могут обеспечить даже 98% эффективность.
Особенности солнечного инвертора
Как уже отмечалось, фотоэлектрические солнечные системы генерируют постоянный электрический ток, а инвертор преобразует его в переменный, который применяется в большинстве современных бытовых приборов и систем.
Современные инверторы, применяемые в солнечной энергетике, на выходе дают синусоидальную волну переменного тока и рассчитаны на высокую мощность нагрузки вплоть до сотни киловатт. Но и это далеко не все - в отличие от простых электронных инверторов, солнечные инверторы предоставляют потребителям и множество дополнительных. Например, они позволяют измерить потребление энергии, вести мониторинг этого потребления, производить настройку и обеспечивать защиту солнечной энергетической системы.
Существует несколько способов реализации солнечных систем. Так, солнечные энергетические системы могут быть спроектированы как сетевые или внесетевые (локальные) системы. Внесетевые системы предназначены для работы независимо от внешней электрической сети, в то время как сетевые системы могут выдавать произведенную электроэнергию в общую сеть. Сетевые системы, в свою очередь, могут иметь системы хранения энергии в виде аккумуляторных батарей, которые могут использоваться для резервного питания, или не иметь хранилищ энергии и питаться в ночное время от общей сети. Но инверторы являются обязательным компонентом во всех типах солнечных систем.
Энергия во внесетевой солнечной системе течет в разных направлениях. Например, в дневное время генерация электроэнергии происходит за счет солнечных панелей, и ток течет от них. Если же солнечного света недостаточно, нагрузка может питаться как от панелей, так и от аккумуляторных батарей, или только от аккумуляторов - например, в ночное время.
Зачем нужен контроллер мощности
Контроллер мощности представляет собой регулирующее устройство, которое следит за тем, чтобы аккумуляторные батареи в системе не перезаряжались и не недозаряжались. Напомним, что работа «не в режиме» плохо отражается на «здоровье» аккумуляторов и снижает срок их службы, а также ухудшает характеристики.
Если установить контроллер мощности между солнечной панелью и аккумуляторными батареями, это значительно увеличит срок эксплуатации батарей, обеспечивая оптимальных режим их работы.
В зависимости от энергетического состояния солнечных панелей, контроллер мощности будет направлять выработанную ими электроэнергию или пользователям, или для зарядки аккумулятора, или в общую сеть. Нужно помнить, что напряжение аккумуляторных батарей не стабильно и настраивается автоматически в зависимости от типа батареи, ее текущего состояния и температуры, в то время как напряжение в домашней сети должно быть постоянным, без скачков. Именно такую задачу и решает контроллер мощности.
Еще одна важная задача солнечного контроллера - обеспечить защиту и безопасность. Это особенно важно для сетевых систем, когда локальная солнечная система подключена к общей сети. В этом случае контроллер мощности должен синхронизировать выработанные локальной системой напряжение и частоту с параметрами общей сети. Он также должен обеспечивать устойчивость работы локальной системы при отключении от общей сети во время сбоев.
Популярные модели
Контроллеры: все моделиС безопасностью могут возникнуть серьезные проблемы, если локальная солнечная система продолжит выдавать энергию в общую сеть, несмотря на то, что та больше не используется. Это может быть опасно для обслуживающего персонала, который может случайно прикоснуться к силовому кабелю, который, как он думает, обесточен. Коллектор мощности позволяет вовремя обнаружить такую ситуацию и отключить солнечную систему от внешней сети.
Отслеживание максимальной мощности солнечной панели
Отслеживание максимальной мощности солнечной панели (Maximum power point tracking, англ., MPPT) - очень специфический параметр контроллера мощности в солнечных системах. Солнечные энергетические системы вырабатывают в течение суток разное количество энергии, которое зависит от интенсивности падающего на солнечные элементы света. Метод MPPT позволяет всякий раз найти то состояние (или точку, т.к. данное состояние можно представить на графике), в котором фотоэлементы обеспечивают максимальную выработку электроэнергии. MPPT-контроллер постоянно отслеживает ток и напряжение, выдаваемые солнечной панелью, перемножает их значения и определяет соотношение ток-напряжение, при которых мощность этой панели будет максимальной. Встроенный в контроллер процессор одновременно отслеживает, на какой стадии заряда находится аккумулятор (наполнение, насыщение, выравнивание, поддержка) и на основании этого определяет, какой ток должен подаваться в аккумуляторную батарею.
Главная цель метода MPPT состоит в том, чтобы управлять нагрузкой, в зависимости от энергетического состояния солнечной панели, чтобы обеспечить наиболее эффективную передачу мощности от солнечных панелей.
Энергия будущего
Сегодня существуют все предпосылки, что наше поколение действительно будет последним, использующим для генерации электроэнергии ископаемые виды топлива, поэтому каждый должен знать основные принципы, используемые в системах с возобновляемыми источниками энергии, т.к. за ними будущее. Это необходимо для правильного выбора решений по обеспечению энергией своего дома.
Источник: TopClimat.ru